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IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 
AND KNOTS 

ERIC GROSSE AND JOHN D. HOBBY 

ABSTRACT. When representing the coefficients and knots of a spline using only 
small integers, independently rounding each infinite-precision value is not the 
best strategy. We show how to build an affine model for the error expanded 
about the optimal full-precision free-knot or parameterized spline, then use the 
Lovasz basis reduction algorithm to select a better rounding. The technique 
could be used for other situations in which a quadratic error model can be 
computed. 

1. INTRODUCTION 

We introduce a technique that improves on componentwise rounding in the 
context of compact representation of approximations. Although the method is 
potentially applicable to a variety of approximation schemes, for concreteness 
we look at free-knot and parametric splines. How can one convert a spline with 
real coefficients x0 to one with (small) integer coefficients xi, efficiently and 
with little distortion? Our solution is: 

(1) Find the x0 E IR!n minimizing 11 r(x) 112 . Parameters such as spline coef- 
ficients and knots are denoted by x, the residual vector or function by 
r(x), and the corresponding discrete or integral L2 norm by ltr(x) 112. 
(This minimization may itself be a challenging problem, but is not the 
principal focus of this paper.) 

(2) Construct a matrix R so that IIR(x - xo) ttr(x) - r(xo)tt about the 
minimum. 

(3) Use the Lovasz basis reduction algorithm to find an integer matrix M 
such that RM is approximately orthogonal and M-' is also integer. 

(4) Using a heuristic, snap yo = M- xo to a nearby y' E Zn and let 
XI = My1. 

Here we denote the set of integers by Z and the set of reals by DR. 
The method takes advantage of the relative insensitivity of splines to their 

knot locations. It compensates for a rounding error introduced in a coefficient 
by rounding a knot in the balancing direction. Suppose a scalar function on 
the interval [0, 1 ] is to be approximated by a spline with coefficients and knots 
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represented in 12-bit fixed-point values. The order and number of degrees of 
freedom of the spline are assumed given; a dozen piecewise cubics would be 
typical. In such a case, the 12 error for the best full-precision floating-point 
spline might be 10-6, the error for our procedure 10-5, and the error for 
simple rounding 10-4. More generally, the method is worthwhile whenever 
there is a gap between the full-precision spline error and the error for simple 
rounding. 

The paper is organized as follows. To make apparent which part of the 
technique is specific to splines and which might be applied to other situations in 
which floating-point structures are to be printed, we postpone to ?4 the specific 
approximation problem. In ?2, we show how to locally approximate a generic 
nonlinear least squares problem min ttr(x)II2 by an affine model ttRx - bit2 . 
In ?3, algorithms are described for minimizing this affine model subject to the 
constraint that x E 7Zn. In ?4, the affine model is adjusted to better fit the 
region which the integer optimization has identified as relevant. In ?5, we show 
that the method pays by applying it to several test functions and observing the 
improvement over simple rounding. Section 6 uses the same idea on parametric 
splines, for which a different construction of the model ItRx - bit2 is necessary. 
Finally, ?7 applies this to the problem of compressing maps and fonts. 

Because this problem may be of interest to distinct audiences from continuous 
and discrete mathematics, we have attempted to include enough details to make 
the paper reasonably self-contained. The issue of nontrivial rounding strategies 
in representing geometric objects has not had much attention in the literature. 
The simple decomposition of ?2 is surely not new, but we could not find it in the 
literature. Section 3 relates the literature on closest lattice point problems [1, 
10, 13, 14, 19] to the rounding application. Determining the optimal free-knot 
spline has received considerable attention [3, 7, 16], and we take advantage of 
that work. Some details of our spline optimization, B-spline differentiation, 
and Hausdorff distance computation may be of interest even to people working 
without integer constraints. 

2. IMPROVED AFFINE MODEL 

Given a nonlinear least squares problem with residual vector r(x), the tra- 
ditional local linear least squares, or "affine", model is the Gauss-Newton ap- 
proximation 

(l) 2 1tr(x01 + j)112 2{Z+ (0112X 

where J = Dr(xo) is the Jacobian matrix of first derivatives. The full Taylor 
quadratic expansion about xo requires a matrix of second partial derivatives, 
Hi = D2ri(xo), for each component of the residual vector r(x). If we let 

(2) A = JTJ + ri(xo)Hi, 

(3) b =rT(xo)J, 

(4) c = !ttr(xo)tt2, 2 
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then the quadratic model is 

(5) 2ttr(xo + C)112 
- C + b a + ! Ad. 2 2 "2 

We intend to expand near a minimum of r, so b should be small and A 
positive semidefinite. The point of this section is to show how this higher-order 
model can also be written in affine form. 

Let 

(6) A = QS2QT, 

where S is a diagonal matrix containing the eigenvalues, and Q is an orthog- 
onal matrix whose columns are eigenvectors of A. Define 

(7) R = SQT, 

(8) d= -S-IQTb. 

Then the quadratic model can be rewritten as 

(9) c + bT +1TA3 = -IR3- dtt + C 2 -itdI2t 

This affine model has a higher order of accuracy than the Gauss-Newton one. 
Spline fitting with free knots leads to very ill-conditioned systems; hence 

some of the eigenvalues may be negative in practice. We return to this issue 
in ?4.2. We use eigenvalues because they present full information about the 
model in a convenient form, though the matrix square root could be computed 
less expensively by a Cholesky factorization. In our application, the cost of the 
linear algebra is small compared to the cost of finding xo. 

3. ADDING INTEGER CONSTRAINTS 

The interesting part of the problem is to find an integer vector x that, given 
an n-by-n matrix R and an n-vector x0, minimizes 

(10) IIR(x-XO)112 

or at least comes close to the minimum. (The requirement x E Zn is equivalent, 
after scaling, to the requirement that x E Rn be represented in limited preci- 
sion.) In other words, we need to find an integer combination of the columns 
of R that is close to Rxo . The set of all such linear combinations is a subset of 
real n-space Rn closed under addition. Such subsets are called integer lattices, 
and the problem of minimizing IIR(x - xO)112 is called the closest lattice point 
problem. 

Van Emde Boas has shown that this problem is NP-complete [19], but good 
approximate solutions can often be found using the Lovasz lattice basis reduc- 
tion algorithm [ 10]. The idea is to use the Lovasz algorithm to find an alternative 
representation of the lattice that makes it easier to find a lattice point close to 
Rxo. Originally, the lattice is represented by the basis formed by the columns 
of R. The result of the Lovasz algorithm is a matrix whose columns form a 
new basis for the same lattice. Thus there is an integer matrix M such that 
the new matrix is RM and M-' is also an integer matrix. This means that a 
lattice vector Rx can be written RMy where y = M- x is an integer vector 
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if and only if x is. The output of the algorithm applied to a simple example 
with n = 2 is shown in Figure 1. By "improved basis", we mean that the set 
RZn is the same as RMZn (the dots in the figure) and the columns of RM 
(the thick arrows) are shorter and more orthogonal than those of R (the thin 
arrows). 

The Lovasz algorithm reduces the problem of minimizing (10) to minimizing 

(1 1) IIRM(y-YO) 11 2, 

where yo = M-' xo and x = My . This is easier than trying to minimize (10) 
directly because simple strategies for choosing y produce relatively good values 
for (11). Even if y is obtained by rounding each component of yo to the 
nearest integer without regard to RM, Babai [ 1 ] is able to give an upper bound 
on the resulting value of (1 1). 

Babai also analyzes a better strategy called Nearest Plane. He shows that it 
finds a lattice point RMy, where IIRM(y -Yo)112 is within a factor of 2n12 of 
the best possible. That is, if RM is the reduced basis matrix produced by the 
Lovasz algorithm, Nearest Plane produces an integer vector y such that 

IIRM(y -YO) 112 < 2n'2 ttRM(y' - YO) 112 

for all integer vectors y'. Thus, x = My is an equally good solution of (10). 
Being within a factor of 2n/2 of optimal may not sound very good, but the 

bound turns out to be very pessimistic in practice and there are a number of ways 
to improve on the algorithm that Babai analyzed. These possible improvements 
are best understood after examining the Lovasz algorithm in more detail in 
the next part of this section. Section 3.2 then presents Babai's Nearest Plane 
algorithm and discusses the improvements. 

3.1. The Lovasz algorithm. We need a version of the algorithm that produces 
the integer matrix M and is appropriate for use with floating-point arithmetic. 
This is significantly different from Schnorr's work on using floating-point arith- 
metic with the Lovasz algorithm, since he assumes that the matrix R is given 
in fixed point and the result is to be computed exactly [14, 15]. 
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procedure reduce (1, k); 

{ r [Rl,kJ; 

M.,k-= rM.,1; 

R.,k-= rR.,1; 

} 
procedure swap (k); 

{ p:= Rk-l,k; 

Exchange M., k- I and M., k 

Exchange R., k-I and R., k; 

c := dk + p2dk-1; 

p' := Pdk-I/C; 

dk =dkdk- I/C; 

dk-l := c; 

- ( ~~1 P/ ) ( 1 ) 

FIGURE 2. Subroutines used by the Lovasz algorithm 

The major variables are an index k, a unit upper triangular matrix R, an in- 
teger matrix M, and a diagonal matrix D with nonzero entries d1, d2, ... , d,. 
These variables satisfy the following invariants: det MI = + 1, and there exists 
an orthogonal matrix Q such that 

(12) RM=QVR. 

(This version of the Lovasz algorithm does not explicitly compute Q or the 
product RM.) 

Figure 2 gives a subroutine reduce(l, k) that performs a column operation 
on M and R so as to make tRl,kt < . It assumes that / < k, so that an 
integer multiple of column / can be subtracted from column k while retaining 
R in unit upper triangular form. (The meaning of the notation [R1, kJ is that 

R, k is to be rounded to the nearest integer.) 
Figure 2 also gives a subroutine swap(k) that exchanges columns k and 

k - I in both M and R. To prevent this from affecting elements of R on 
or below the diagonal, rows k and k - 1 of R are then left-multiplied by a 
matrix 

( 13) ( 1 )(1 -P) 

chosen so that p = Rk_l k at the beginning of swap(k) and there is an orthog- 
onal matrix of the form 

(14) (di n /) (1 ) (0 1 ) ( 1/ Idk- 
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procedure Lovdsz(R, a); 

{ Use modified Gram-Schmidt to find D and R with R = QV R; 

Initialize M to be the identity matrix; 

k := 2; 
while k < n 
do {reduce(k- 1, k); 

if dk < (a _ k 
_ 

- 
(-k lk)dk-1 

then {swap(k); k := max(k - 1, 2); } 
else {for l:= k - 2, k - 3,..., 1 

do reduce(l, k); 
k:=k+ 1; 

I 
I 

FIGURE 3. A version of the Lovasz algorithm that computes 

matrices M, D, and R as in (12) 

where dk and d'1 are the new values of dk and dk-l in swap(k). Thus 

left-multiplying VD R by (14) does not affect the invariant that there is an 
orthogonal matrix Q satisfying (12). This is equivalent to left-multiplying R 
by (13) and updating dk and dkl. 

The version of the Lovasz algorithm in Figure 3 uses the reduce and swap 
routines to manipulate the matrices D, R, and M while maintaining the 
invariants. Its arguments are an n x n matrix R and a real parameter a that 
can be chosen in the range 4 < a < 1 to control the tradeoff between running 
time and the equality of the results. 

When the Lovasz algorithm stops, all off-diagonal entries of R are between 

- 2 and 2 , and the entries of D satisfy 

dk? dk 
dk- < _d1 

a- 4 

for k = 2, 3, ..., n . (See [10].) Hence the ratio dk i/dk is at most (a -4i 

for all i less than k. This upper bound is 2i when a = 3, but it is tightened 
to (4)i when a approaches one. 

The cost of tightening the bounds by increasing a is that this increases the 
running time. Lovasz et al. bound the running time by showing that each call 
to swap(k) reduces the product 

n 

(15) JJ dn-i 
i=1 

to at most a times its former value. In practice, the reduction factor is likely 
to be better than this, especially if a . 1, so the running time for a = 0.9999 
is only about three times that for a = 3. 
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3.2. Babai's Nearest Plane algorithm. The nearest lattice point problem in- 
volved finding an integer vector y so that RMy is near RMyo in Euclidean 
n-space, given a vector yo and matrices R and M. Babai suggests that if RM 
is produced by the Lovasz algorithm, good results can be obtained by fixing the 
components of y one at a time starting with Yn . When choosing Yk, it is a 
good idea to take the choices for Yk+1 ,Yk+2, ... , Yn into account rather than 
just looking at the nth entry in yo. Thus the Nearest Plane algorithm chooses 
Yk according to the point RMy nearest to RMyo on the plane determined by 
restricting Yk+1, Yk+2,- .. , Yn according to their chosen values. 

With the help of (12), the norm of RM(y - yo) becomes 

(16) II V/ R(y - Yo)II2 

The advantage of this is that R is unit upper triangular, and Babai's Nearest 
Plane algorithm reduces to doing back substitution with each element of y 
rounded to the nearest integer as soon as it is computed. Writing w = Ryo for 
the right-hand side, y can be computed as follows: 

fori:=n,n-l,..., 1 
n 

do yi := Wi- L Ri, jY 

This produces a vector y that makes (16) small, and via the relation x = My, 
an x that makes (10) just as small. 

Lovdsz(R, 0.9999); 
Solve Myo = xo for yo; 

w :=Ryo; 
for i:= n, n - 

n 
do yi := wi - ,Ri, jYj 

x := My; 

FIGURE 4. How to find an integer vector x that makes 

IIR(x - xo)J12 small 

Figure 4 gives the complete strategy for finding an integer vector x that 
makes (10) small. It could be speeded up somewhat by starting with w = Rxo 
and modifying Lovdsz to maintain w = RM- xo0. This eliminates the need to 
solve Myo = xo and compute Ryo. The maintenance of w involves adding 

Wk-l:k = (o P 1 _p) Wk- : k 

at the end of swap, and changing the second line of Lovdsz from 
-2 - - 
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to 

dof di:= Ri, i; Ri,. := Rsi, /Ri, i; wi := wilRi, il 
Once the Nearest Plane algorithm has been implemented efficiently, we need 

to know how small it makes (16). Babai shows in [1] that it is within a factor 
2n/2 of the best possible when the Lovasz algorithm is run with a = I . Using 
the recommended value a = 0.9999 can only improve the bound, since the 
effect of this change is to tighten the constraints on the final values of the 
entries of D from dk-i/dk < 2i to dk-ildk < (4)i. In fact, Babai's proof 
readily generalizes to give a bound of 

fin!2 i 
fl12 wherefi= 

Thus Nearest Plane is guaranteed to get within a factor of 1.732 x 1.334nI2 of 
the optimum value of (16). 

Experiments with the test problems given in ?5 show that Nearest Plane 
combined with the Lovasz algorithm usually reduced (16) to within 20% of the 
optimum value for n < 20. Thus, there probably is not much to be gained by 
using more elaborate algorithms, although Schnorr [13] does suggest a family of 
lattice reduction algorithms that are theoretically superior to Lovasz's. Lagarias, 
Lenstra, and Schnorr [8] also discuss a number of issues relevant to the problem 
of finding near optimal solutions to the nearest lattice point problem. See also 
LaMacchia [9] for a comparison of Lovasz and Seysen basis reduction. 

Another option for small n is brute force search. Experiments showed that, 
with clever pruning, exhaustive search can find the optimum when, say, n < 20, 
but the running time can be huge and the payoff is usually small. 

4. 12 SPLINE WITH FREE KNOTS 

Imagine that you are on a deep space probe having just measured a function 
of some sort and fit it by a spline. You wish to transmit it over a communications 
channel with severely restricted bandwidth. Rather than sending double- or even 
single-precision floating-point coefficients, you can afford to convert to integers 
in order to achieve better compression of the data. 

We wish to approximate a general smooth f by a spline E ajBj, which may 
be generically described by: n, the number of degrees of freedom; k, the order 
(k = 4 for a piecewise cubic); a knot sequence {ti} Ii<i<n+k ; B-spline coefficients 
faj}1<i<n - 

Let aj, tij be the specific knots and coefficients that approximately minimize 

(17) sZ (f (xi) - Z ajBj(xi)) 
l<i<m 

for some fixed sample points {xi}1<i<m. Let Bj be the n-vector of B-splines 
on the knots t1j. Denote by Ba the m-by-n matrix [Bj(xi)]. Denote by Bt 
the m by n - k matrix 

(18) l j alB (xi) 
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where j ranges over the free knots, k + 1 < j < n. Taylor expansion around 
aj, tj gives a linearized residual 

a~~~~~~~ 
(I19) |[BaBt] [t]-[f(x) + Btt]| U 2 

as in equation (1). 
Jupp [7] has ably described the computational considerations in determining 

aj, tj . See also [4]. For the purpose of our experiments, we have used Schryer's 
ssaf [16] (which is based on de Boor's newnot [3]) to get a good initial guess 
to tj . ssaf only attempts to get in the general vicinity of the optimum; further 
effort would not lead to a dramatically smaller residual. In contrast, since we 
need the maximum flexibility in moving knots, it is important that tj be close 
to the continuous optimum. Therefore, we use Gay's [5] nonlinear least squares 
program n2f to refine the ssaf results. For the present purposes, just assume tj 
given. 

4.1. Derivatives of B-splines. It is apparent that a key building block for the 
quadratic model is 0BI/O tj . We compute these by differentiating the recurrence 
relation for the B-splines, 

(20) B,k(U) = u-ti Bi,k 1(U) + ti+k 
- U Bi+ ,k- (U) 

ti+k-. - ti ti+k -ti- 

(There is also a formula using divided differences of truncated powers, given in 
Lemma 3.1 of [7] and Theorem 4.27 of [17].) In practical terms, this just means 
editing bsplvb in de Boor's pppack collection of spline routines. For each line of 
code that contributes to the B-spline table, add a loop to accumulate derivatives. 
In other words, apply the chain rule of differentiation directly to Fortran. This 
has been done and is available by e-mail: 

mail netlibOresearch.att.com 

send dbspvt from a 

We have not studied stability of the algorithm, but it meets our needs in this 
application. On the half-open interval [tl, t1+1), the nonzero B-splines are 
Blk+1, ...I , B . These depend on tl-k+, ... , tl+k- So in addition to the 

(21) biatx(j) =Bj(u), 1 < j < k, 
returned by bsplvb, our subroutine also returns 

(22) dbiatx(j,i) Bil-k+j(u) 1< j < k, < i < 2k. 
0 t1-k+i 

It would be possible to proceed this way for the second derivatives needed to 
build the Taylor quadratic, but for convenience we use centered differences with 
step size 2e/3Ch and symmetrize by (Hi + HiT)/2. 
4.2. Adjusting the local model. We want the quadratic model (5) to be valid 
over the region that the lattice algorithms search. In Figure 5, the solid curve in- 
dicates llr(x) 112/2 =: r2 in the vicinity of x0, sliced along the eigenvector of A 
corresponding to the smallest eigenvalue. The dashed line shows the quadratic 
model, adjusted as described in this section. Notice that r2 is behaving more 
like a quartic than a quadratic, so a quadratic model based purely on derivative 
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FIGURE 5. Slices of the r2 surface and adjusted affine model 
along the first and last eigenvectors illustrate the need in certain 
directions for more than purely local derivative information 

information at xo would be too flat. This means that the lattice algorithms 
will in effect be told that they can make radical changes in coefficients with- 
out changing r2 much. For directions corresponding to large eigenvalues, the 
quadratic model is an excellent fit. 

This figure is for function 2 (arcsin) described in ?5 with k = 4, n = 8 
(cubic spline with four interior knots). In this example, the condition number 
of A (the ratio of the largest to the smallest eigenvalue) is about 3 * 105; in 
other examples, the smallest eigenvalue is negative, even though the optimizer 
succeeded in finding an xo that is a minimum to graphical accuracy. 

To repair these two defects in the model, we would like to build a quadratic 
based on information somewhat less local than just the derivatives at xo, but 
making enough samples of r(x) to fit all (2n - k)2/2 coefficients for a better 
A is expensive and unnecessary. Use the eigenvectors of A, probing r(x) 
some distance along those 2n - k orthogonal directions, and adjusting only the 
eigenvalues to get an A so the model interpolates r(x) at xo and the probes. 
This is easy to do and works well in our tests. 

The hardest issue is deciding how far to probe. We aim to have a quadratic 
model valid over the region searched in the discrete optimization phase. For 
each eigenvector we initially take a step 30 which is the smaller of: 1/ 10 of 
interval on which the spline is defined, and 1/2 of distance that would lead 
to knots coalescing. These are arbitrary parameters designed merely to give a 
sensible starting model. Because the eigenvectors are orthogonal, it is valid to 
probe independently in each direction. Let r = r([xoj )2, where fxoJ is the 
result of rounding the components of xo. We then examine r2 at 3 := 30 to 
ensure that r2 < r. If not, we cut the step, 3 := 3/2, and iterate. We then 
adjust eigenvalues so the model is at least r2 for J and at least T for 3o. 
(The latter restriction is necessary to prevent later rounding from coalescing the 
knots.) After updating the eigenvalues S, we form R = SQT and then use the 
rounding process of ?3. 

Section 5 shows that this improved rounding strategy is much better than 
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just rounding the components of x0. This suggests that a better r can then 
be obtained by using the result of improved rounding in place of Fxoj. Re- 
peating the eigenvalue adjustment and updating R = SQT produces a less 
pessimistic model with which we then repeat the rounding process of ?3. Sec- 
tion 5 shows that this iterated improvement strategy is somewhat better than 
improved rounding without the extra iteration. 

5. NUMERICAL RESULTS FOR FREE-KNOT SPLINES 

The complete process of generating rounded spline coefficients and knots was 
implemented and tested. For lack of any standard collection of test functions 
in the approximation community, we arbitrarily took the six nonsingular test 
functions that come along with Schryer's ssaf program: 

function 2: 2 + 2 arcsin(-.99 + 1.98x)/ arcsin(.99), 
function 6: (cosh(2x - 1) - 1)/(cosh(l) - 1), 
function 7: xl 6 

function 8: (e 2x-1 - 1 )/(e - e-1), 
function 15: 2 + 2 sin 2?rx, 
function 21: - ex log x. 

The functions have been scaled so that x and f(x) are both confined to 
the interval [0, 1]; hence the spline coefficients a1, a2, ... , a, and the knots 
tk+1 , tk+2, ..., tn are also 0(1) . These quantities are to be represented in fixed 
point as integers scaled by 2-b, where b is a parameter chosen in advance to 
control the number of bits of precision to use. 

For example, consider the case of function 15 with b = 10, n = 8, and 
k = 3. Using n2f to find the optimum for the continuous problem results in 
setting the eight spline coefficients 

a,, a2, ..., a8 = 510.18u, 721.17u, 1179.29u, 
714.34u, 309.66u, -155.29u, 302.83u, 513.82u 

and placing the five interior knots 

t4, t5, ... , t8 = 126.24u, 388.875u, 512u, 635.125u, 897.756u. 

Here, u = 2-b is one unit in the last place. Sampling the difference between the 
resulting spline and function 15 at 115 x-values produces a root mean square 
(RMS) error of 1.045 x 10-3. 

One way to get fixed-point versions of the knots and spline coefficients is 
to naively round the thirteen numerators to integers, thereby increasing the 
RMS error to 1.076 x 10-3. Creating a quadratic model for this error value 
as explained in ?2, and using this to produce improved integer values for the 
numerators as in ?3, we find 

al, a2, a8= 510u, 723u, 1177u, 720u, 318u, -158u, 303u, 514u, 
t4, tS,...,t8= 127u, 388u, 509u, 633u, 898u 

for an RMS error of 1.057 x 10-3 . 
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function 15, k=3, b=10 function 15, k=4, b=10 

L() 

L() 

1 1.2 1.4 0.9 1 1.1 1.2 1.3 

FIGURE 6. The log1o (RMS error) in the spline approximation 
to function 15 as a function of loglo(n) for k = 3, 4. Reading 
from top to bottom, the four error curves in each graph are 
for simple rounding, improved rounding, iterated improvement, 
and the continuous optimum 

Rounding the knots and spline coefficients to fixed-point values has little ef- 
fect on the error in this example because the error in the continuous problem 
is relatively large. Figures 6 and 7 show what happens to the RMS error when 
k and n are increased. As n is increased, the error for the continuous opti- 
mum spline parameters decreases steadily while error for the various rounding 
strategies tends to level off at some point. 

Like all error graphs given in this section, these graphs are log-log plots of 
the RMS error for the various rounding strategies as a function of n. The 
upper line always shows the error for simple rounding, the middle two are for 
improved rounding and iterated improvement, and the lowest line is always for 
the continuous optimum. 

The error for simple rounding tends to stay near 10-3 4 whenever n is large 
enough to make the error for the continuous optimum less than 10-4. The 
error at the continuous optimum has to be reduced to about 10-5 in order 
to make the error for the more sophisticated rounding strategies flatten out, 
but then they tend to jump around in the vicinity of 10-43. Thus, for data 
compression applications, it makes sense to choose n near this point where the 
error graphs first start to flatten out. Larger n would mean having unnecessary 
knots and spline coefficients, while smaller n would mean sacrificing accuracy. 

Figure 7 shows that the primary effect of increasing k is to make the contin- 
uous optimum error fall to 10-5 before n gets very large. Thus a sufficiently 
smooth test function is represented most compactly when k is as large as pos- 
sible. Of course there is a time penalty for large k and some applications may 
impose a priori restrictions on k. We shall restrict our attention to the case 
k = 4; Figures 6 and 7 give a general idea of the effect of changing k. 

We can get a better idea of the error behavior for the various rounding strate- 
gies by considering the other test functions with other values of b. The error 
for simple rounding is generally somewhat less than half of u = 2-b once n 
is large enough, but this depends somewhat on the test function. Since u/2 
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function 15, k=5, b=10 

N?- 

0.9 1 1.1 1.2 1.3 

FIGURE 7. The logarithm of RMS error versus loglo(n) for a 
spline approximation problem as in Figure 6, but with k = 5. 
As in that figure, there is one curve for each rounding strategy 
and one at the bottom for the continuous optimum 

is an upper bound on the effect of rounding each spline coefficient, one would 
normally expect a significantly smaller effect on the value of the spline function 
obtained by taking a weighted average of four spline coefficients. However, this 
is offset by the effect of rounding the knot positions tk+1 , tk+2, .., tn , 

Figure 10 on p. 191 gives the RMS error for the various rounding strategies 
for all six test functions when rounding to eight bits (b = 8). All the graphs 
show a significant amount of noise due to the unpredictable nature of rounding 
error, but improved rounding is generally about five times better than simple 
rounding, and iterated improvement improves this to eight times better. 

The more sophisticated rounding strategies really prove their usefulness when 
b is increased. As can be seen from Figure 11 (p. 192), the gap between simple 
rounding and iterated improvement increases to about a factor of 20 when 
rounding to twelve bits. Since the error for simple rounding does appear to be 
roughly proportional to 2b, this implies that iterated improvement with 12-bit 
rounding is likely to be better than simple rounding to 16-bits. 

What about the running time? It is mainly a function of the number of 
spline coefficients n and the spline order k. Figure 8 (next page) gives log-log 
graphs of the observed running time for the main subtasks for k = 3, 4, 5. 
The predominant subtask labeled " c " in the graphs is finding the continuous 
optimum and constructing the quadratic model. The continuous optimizer n2f 
takes dozens of steps each involving 0(n3) work, and computing eigenvectors 
for building the quadratic model is also 0(n3). The other three graphs labeled 

U u ",(" L" and " n " refer to the time to update the quadratic model and run 
the Lovasz and Nearest Plane algorithms. Since iterative improvement causes 
each of these tasks to be done twice, their actual contributions to the total 
running time are roughly twice what is shown but this would not shift the curves 
very much on the log-log graphs. (All timings were done with double-precision 
floating point on a VAX 8550.) 
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function 15, k=4, b=10 

0.9 1 1.1 1.2 1.3 
function 15, k=3, b=10 function 15, k=5, b=10 

,0X ~~~~~~~ 

0.8 1 1.2 1.4 0.9 1 1.1 1.2 1.3 

FIGURE 8. The base-ten logarithm of observed running time in 
seconds versus log1o(n) for the indicated k-values. The line 
labeled " c " is the time for finding the continuous optimum and 
quadratic model; the " u " line gives the time for updating the 
model with a new error estimate; and the " L" and " n " lines 
are for the Lovasz and Nearest Plane algorithms 

6. PARAMETRIC SPLINES 

Section 4 mentioned the motivation of limited bandwidth; an equivalent 
situation is limited storage. Returning from the deep space probe to earth, 
imagine you wish to compress a large database of road coordinates. Subject to 
the restriction that the map curves remain accurate enough to guide a driver, 
you wish to fit as much of the country as possible into limited storage space. 

We wish to approximate a curve f: [0, 1] -+ RP by a parametric spline 
s = E ajBj, described by: n, the number of degrees of freedom; k, the order 
(k = 4 for a piecewise cubic); B-spline control points {aj}1<i<n E Rp . 

The relevant measure of error in this approximation is Hausdorff distance 
between the set of points f([O, 1]) and s([O, 1]). This permits considerable 
freedom in the choice of spline parameterization. For convenience and to avoid 
having to store any coefficients other than the control points, we use as knot 
sequence, {ti}1<i<n+k, the chordal distance along the control point polygon. 

To start the continuous optimization, we use the Wall and Danielsson method 
for fast polygonal approxiation [20]. This method assumes f is piecewise linear 
and produces a coarser piecewise linear curve g meeting a constraint on the 
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area between f and g. The vertices of g provide a crude initial guess for 
{aj1}. From these and the Hausdorff sampling described next, we can solve a 
linear least squares problem to get a better initial guess for {a} }. 

Computing the true Hausdorff distance between f and s is no simple matter 
[6]. For the experiments reported below, we first took a sample of points along 
f, getting higher density in areas of high curvature by using a fixed number 
of samples per segment in the piecewise linear f. Each time a new s was 
constructed, we evaluated it at uniformly spaced t, made a monotone matching 
with the samples from f, and took one step of Newton's method to refine the 
"nearest neighbor" estimate. Using spline derivatives up to second order and 
taking p = 2, the Newton step in t that attempts to make the tangent s'(t) be 
orthogonal to the residual s(t) - f (xi) is given by 

23 ~~~~~~~( fl -Sl )X + (f2 -S2)S' (23) tnew = told - (fi - I/ s)s + (f2 2 s s~ + (fi Si)S' - s s~ + (f2 - S 

where fi means the first component of f(xi), s2 is the second component of 
the derivative of the spline at told, and so on. This Newton step is safeguarded 
by checking that it does not increase s(t) - f(xi) and that it does not step 
outside the interval on which the spline is defined. Instead of our discrete 
search followed by one Newton, one could choose to sample at many more 
points or use more sophisticated univariate optimization. 

Let there be m such sample points and denote the neighbor distances by 
ri = IIs(ti) - f(xi)I I. Then El<i<m r2 is an objective which we minimize by 
letting Gay's n2f adjust the spline control points. To avoid adding a stochastic 
component to the objective, we started the matching afresh each time, accepting 
O(m2) runtime. Since s is changing slowly, it is clear that with care the cost 
of the Hausdorff estimate could be reduced to 0(m). 

The final step is to build an affine model, IIR(x-xo)112 IIr(x)-r(xo)112 . Un- 
like the univariate free-knot case, an analytic Taylor series for e is complicated 
to obtain, involving the chain rule and derivatives of the spline, the chordal 
parameterization, and the Hausdorff estimation. Instead, we directly solve for 
the mn parameters in R by sampling r E JRtm at q points and formulating 
a q-by-n linear least squares problem with m right-hand sides. Motivated by 
analogy with estimating the quadratic Taylor polynomial by centered first and 
second differences of step size a, we choose q = 2(n + (n - 1)n) and sample 
llr(x) - r(xo)112 at x = xo + alui + a2uj for 1 < i < j < n and for a1, a2 
taking values from {O, a, -a}. 

As in ?4.2, it is important to correct this model by probing along nearly null 
vectors of R. Let R = USVT be a singular value decomposition of the R 
obtained by least squares as described in the preceding paragraph. Probe along 
directions corresponding to columns of V, update S, and finally let the new 
model be R = SVT. In this way, the parametric spline rounding problem has 
been reduced to the form needed by the algorithm of ?3. 

7. NUMERICAL RESULTS FOR PARAMETRIC CURVES 

Parametric spline fitting with rounded B-spline control points was tested on 
a United States government map database and on outlines for a Cyrillic font. 
The map database [18] described roads, streams, railroads, and other features 
as sequences of (latitude, longitude) pairs. Many of the resulting polynomial 
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FIGURE 9. A road from the map database and the corresponding 
parametric B-spline each plotted in units of .00050 of latitude 
(about 56 meters). Open circles in the right-hand plot mark B- 
spline control points and the heavy line is the control polygon. 
Short segments perpendicular to the spline give the error 

lines are promising candidates for curve approximation because actual roads, 
streams, and railroads are often curved. 

The object is to choose suitably accurate parametric B-spline approximations 
and represent them as concisely as possible. Then the control points are rounded 
so that they are integer multiples of some basic unit u. This could be done by 
simple componentwise rounding, but it is better to use the quadratic error model 
from ?6 with the improved rounding algorithm in ?3. 

For data compression, the basic unit u should be as large as possible so that 
the control points can be represented with small integers. An overall error target 
of 22.2 meters was set, based on the apparent intrinsic local error in the data 
for examples like the one in Figure 9. Next, the map features were broken at 
sharp corners, and the ones that had less than 8 vertices or were straight to 
within the desired tolerance were omitted from further consideration. Spline 
approximations to the resulting 175 map features produced RMS errors ranging 
from 0.51 to 21.3 meters. 

A basic unit of u = 56 meters sufficed to keep all the RMS errors under 
22.2 meters. A simple delta encoding of the resulting control points produced 
1498 numbers. The UNIX pack command provides a reasonably efficient way 
to encode these numbers. Its Huffman encoding requires 8552 bits including a 
dictionary that described the encoding. Hence the actual numbers require 7808 
bits or 5.12 bits per number encoded. This is very close to the entropy bound 
of 7595 bits given by the formula 

e= - Cc log2( ) 

where ci is the number of times i occurs and Ctot = >2ci . 
How much improvement do the techniques of ??6 and 3 provide over sim- 

ple componentwise rounding? With simple rounding, the basic unit has to be 
reduced to 16 meters in order to keep the RMS errors under 22.2 meters. This 
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function 2, k=4, b=8 function 6, k=4, b=8 

fucto 7. k=, ,-8fnto ,k4 = 

C? < ? [?J/==R>-C 

0.9 1 1.1 1.2 0.9 1 1.1 1.2 
function 7, k=4, b=8 function 8, k=4, b=8 

0.9 1 1.1 1.2 0.9 1 1.1 1.2 
function 15, k=4, b=8 function 21, k=4, b=8 

0.9 1 1.1 1.2 0.9 1 1.1 1.2 

FIGURE 10. The logarithm of RMS error versus loglo(n) for 
each test function when b = 8 

makes some of the numbers, produced by delta-encoding the control points, too 
big for pack to handle since they do not to fit in one byte. However, the entropy 
bound of 10078 bits or 6.73 bits per number encoded is adequate for compar- 
ison. Based on the entropy, improved rounding provides a 29% improvement 
in data compression. 

The actual improvement in data compression will be lower because parts of 
the map database were eliminated from consideration as not suitable for spline 
approximation. This is to be expected since compressing the map database 
would be a large project and spline fitting is only one part of it. 
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function 2, k=4, b=12 function 6, k=4, b=12 

1 1.2 1.4 0.9 1 1.1 1.2 1.3 
function 7, k=4, b=12 function 8, k=4, b=12 

0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3 
function 15, k=4, b=12 function 21, k=4, bt12 
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0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3 

FIGURE 11. The logarithm of RMS error versus loglo(n) for 
each test function when b = 12 

The font application involved 59 alphabetic characters from a Cyrillic font. 
The character shapes were described as polygonal outlines containing a total 
of 3404 vertices. They were preprocessed by breaking at sharp corners and 
removing straight segments that were not suitable for spline approximation. 
The continuous spline approximation yielded errors up to 0.33% of the font's 
em size; i.e., if the 10 point font were scaled so that 10 printer's points is 100 
"font units", the RMS errors would range from 0.032 to 0.16 font units. 

The target for RMS errors after the rounded B-spline control points was set 
to 0.35 font units. With improved rounding from ??6 and 3, and control point 
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coordinates could be expressed as multiples of 2.19 font units. The resulting 
1510 delta-encoded coordinates had an entropy bound of 6665 bits or 4.41 bits 
per coordinate. 

With simple rounding, keeping the RMS errors under 0.35 font units re- 
quired the control point coordinates to be multiples of 0.92 font units. The 
delta-encoded coordinates had an entropy bound of 8511 bits or 5.64 bits per 
coordinate. This implies improved rounding should give a roughly 28% im- 
provement in data compression. This does not count the relatively straight 
segments that were filtered out as not suitable for spline approximation. About 
50% of the segments in the original polygonal outlines fall into this category. 

For comparison, we note that the original data in the map database, rounded 
to units of 22.2 meters, has a theoretical entropy of 33283 bits (versus 7595 
for splines). The font outlines, rounded to .466% of em size, have a theoretical 
entropy of 27328 bits (versus 6665 for splines). Thus we are achieving about a 
factor of 4 improvement with the (lossy) compression. 

8. FUTURE DIRECTIONS 

There are many aspects of the problem still to explore. 
In the univariate free-knot spline, it would be interesting to try Wall- 

Danielsson as an alternative to ssaf. The optimization should use the log 
transform recommended by Jupp [7], which we have had good success with 
in conformal mapping [2]. Other approaches that we would like to try, suitably 
adapted, are [12] and [11]. A thorough comparison of the various approaches 
would be desirable, but is tangential to our main topic of how to round, once 
the continuous optimum has been found. 

Although we have demonstrated excellent theoretical compression of the map 
database, practical completion of the project calls for further tuning of toler- 
ances, a more robust spline optimization procedure, maintenance of intersec- 
tion topology, and other work. Since this is a database that at present does 
not quite fit on one CD-ROM, but could potentially be of value in millions of 
automobiles, we hope that someone will be motivated to follow up on this. 

There are applications besides splines, in areas like image processing, where 
current algorithms compute approximations in floating point, but the final de- 
sired output is represented in small integers. If suitable error metrics can be 
found, improved rounding might be found valuable for these problems as well. 
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