
MATHEMATICS OF COMPUTATION
VOLUME 63, NUMBER 207
JULY 1994, PAGES 175-194

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS
AND KNOTS

ERIC GROSSE AND JOHN D. HOBBY

ABSTRACT. When representing the coefficients and knots of a spline using only
small integers, independently rounding each infinite-precision value is not the
best strategy. We show how to build an affine model for the error expanded
about the optimal full-precision free-knot or parameterized spline, then use the
Lovasz basis reduction algorithm to select a better rounding. The technique
could be used for other situations in which a quadratic error model can be
computed.

1. INTRODUCTION

We introduce a technique that improves on componentwise rounding in the
context of compact representation of approximations. Although the method is
potentially applicable to a variety of approximation schemes, for concreteness
we look at free-knot and parametric splines. How can one convert a spline with
real coefficients x0 to one with (small) integer coefficients xi, efficiently and
with little distortion? Our solution is:

(1) Find the x0 E IR!n minimizing 11 r(x) 112 . Parameters such as spline coef-
ficients and knots are denoted by x, the residual vector or function by
r(x), and the corresponding discrete or integral L2 norm by ltr(x) 112.
(This minimization may itself be a challenging problem, but is not the
principal focus of this paper.)

(2) Construct a matrix R so that IIR(x - xo) ttr(x) - r(xo)tt about the
minimum.

(3) Use the Lovasz basis reduction algorithm to find an integer matrix M
such that RM is approximately orthogonal and M-' is also integer.

(4) Using a heuristic, snap yo = M- xo to a nearby y' E Zn and let
XI = My1.

Here we denote the set of integers by Z and the set of reals by DR.
The method takes advantage of the relative insensitivity of splines to their

knot locations. It compensates for a rounding error introduced in a coefficient
by rounding a knot in the balancing direction. Suppose a scalar function on
the interval [0, 1] is to be approximated by a spline with coefficients and knots

Received by the editor August 14, 1991 and, in revised form, July 13, 1993.
1991 Mathematics Subject Classification. Primary 65D07; Secondary 1 IH55, 52C07, 65G05,

68R99, 68U05.
Key words and phrases. Free-knot splines; parameterized splines; rounding; closest lattice point;

compression.

() 1994 American Mathematical Society
0025-5718/94 $1.00 + $.25 per page

175

176 ERIC GROSSE AND J. D. HOBBY

represented in 12-bit fixed-point values. The order and number of degrees of
freedom of the spline are assumed given; a dozen piecewise cubics would be
typical. In such a case, the 12 error for the best full-precision floating-point
spline might be 10-6, the error for our procedure 10-5, and the error for
simple rounding 10-4. More generally, the method is worthwhile whenever
there is a gap between the full-precision spline error and the error for simple
rounding.

The paper is organized as follows. To make apparent which part of the
technique is specific to splines and which might be applied to other situations in
which floating-point structures are to be printed, we postpone to ?4 the specific
approximation problem. In ?2, we show how to locally approximate a generic
nonlinear least squares problem min ttr(x)II2 by an affine model ttRx - bit2 .
In ?3, algorithms are described for minimizing this affine model subject to the
constraint that x E 7Zn. In ?4, the affine model is adjusted to better fit the
region which the integer optimization has identified as relevant. In ?5, we show
that the method pays by applying it to several test functions and observing the
improvement over simple rounding. Section 6 uses the same idea on parametric
splines, for which a different construction of the model ItRx - bit2 is necessary.
Finally, ?7 applies this to the problem of compressing maps and fonts.

Because this problem may be of interest to distinct audiences from continuous
and discrete mathematics, we have attempted to include enough details to make
the paper reasonably self-contained. The issue of nontrivial rounding strategies
in representing geometric objects has not had much attention in the literature.
The simple decomposition of ?2 is surely not new, but we could not find it in the
literature. Section 3 relates the literature on closest lattice point problems [1,
10, 13, 14, 19] to the rounding application. Determining the optimal free-knot
spline has received considerable attention [3, 7, 16], and we take advantage of
that work. Some details of our spline optimization, B-spline differentiation,
and Hausdorff distance computation may be of interest even to people working
without integer constraints.

2. IMPROVED AFFINE MODEL

Given a nonlinear least squares problem with residual vector r(x), the tra-
ditional local linear least squares, or "affine", model is the Gauss-Newton ap-
proximation

(l) 2 1tr(x01 + j)112 2{Z+ (0112X

where J = Dr(xo) is the Jacobian matrix of first derivatives. The full Taylor
quadratic expansion about xo requires a matrix of second partial derivatives,
Hi = D2ri(xo), for each component of the residual vector r(x). If we let

(2) A = JTJ + ri(xo)Hi,

(3) b =rT(xo)J,

(4) c = !ttr(xo)tt2, 2

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 177

then the quadratic model is

(5) 2ttr(xo + C)112
- C + b a + ! Ad. 2 2 "2

We intend to expand near a minimum of r, so b should be small and A
positive semidefinite. The point of this section is to show how this higher-order
model can also be written in affine form.

Let

(6) A = QS2QT,

where S is a diagonal matrix containing the eigenvalues, and Q is an orthog-
onal matrix whose columns are eigenvectors of A. Define

(7) R = SQT,

(8) d= -S-IQTb.

Then the quadratic model can be rewritten as

(9) c + bT +1TA3 = -IR3- dtt + C 2 -itdI2t

This affine model has a higher order of accuracy than the Gauss-Newton one.
Spline fitting with free knots leads to very ill-conditioned systems; hence

some of the eigenvalues may be negative in practice. We return to this issue
in ?4.2. We use eigenvalues because they present full information about the
model in a convenient form, though the matrix square root could be computed
less expensively by a Cholesky factorization. In our application, the cost of the
linear algebra is small compared to the cost of finding xo.

3. ADDING INTEGER CONSTRAINTS

The interesting part of the problem is to find an integer vector x that, given
an n-by-n matrix R and an n-vector x0, minimizes

(10) IIR(x-XO)112

or at least comes close to the minimum. (The requirement x E Zn is equivalent,
after scaling, to the requirement that x E Rn be represented in limited preci-
sion.) In other words, we need to find an integer combination of the columns
of R that is close to Rxo . The set of all such linear combinations is a subset of
real n-space Rn closed under addition. Such subsets are called integer lattices,
and the problem of minimizing IIR(x - xO)112 is called the closest lattice point
problem.

Van Emde Boas has shown that this problem is NP-complete [19], but good
approximate solutions can often be found using the Lovasz lattice basis reduc-
tion algorithm [10]. The idea is to use the Lovasz algorithm to find an alternative
representation of the lattice that makes it easier to find a lattice point close to
Rxo. Originally, the lattice is represented by the basis formed by the columns
of R. The result of the Lovasz algorithm is a matrix whose columns form a
new basis for the same lattice. Thus there is an integer matrix M such that
the new matrix is RM and M-' is also an integer matrix. This means that a
lattice vector Rx can be written RMy where y = M- x is an integer vector

178 ERIC GROSSE AND J. D. HOBBY

0 * **

0 * * * 0

0 * * *

0 * .
0 0 0

0 0

FIGURE~ ~ ~~~ 0. 0eor 0ln 0hnarw)adatr(hr
hcr

rows)~~~~~~~~~~ 0h oazltie ai euto

if and only if x is. The output of the algorithm applied to a simple example
with n = 2 is shown in Figure 1. By "improved basis", we mean that the set
RZn is the same as RMZn (the dots in the figure) and the columns of RM
(the thick arrows) are shorter and more orthogonal than those of R (the thin
arrows).

The Lovasz algorithm reduces the problem of minimizing (10) to minimizing

(1 1) IIRM(y-YO) 11 2,

where yo = M-' xo and x = My . This is easier than trying to minimize (10)
directly because simple strategies for choosing y produce relatively good values
for (11). Even if y is obtained by rounding each component of yo to the
nearest integer without regard to RM, Babai [1] is able to give an upper bound
on the resulting value of (1 1).

Babai also analyzes a better strategy called Nearest Plane. He shows that it
finds a lattice point RMy, where IIRM(y -Yo)112 is within a factor of 2n12 of
the best possible. That is, if RM is the reduced basis matrix produced by the
Lovasz algorithm, Nearest Plane produces an integer vector y such that

IIRM(y -YO) 112 < 2n'2 ttRM(y' - YO) 112

for all integer vectors y'. Thus, x = My is an equally good solution of (10).
Being within a factor of 2n/2 of optimal may not sound very good, but the

bound turns out to be very pessimistic in practice and there are a number of ways
to improve on the algorithm that Babai analyzed. These possible improvements
are best understood after examining the Lovasz algorithm in more detail in
the next part of this section. Section 3.2 then presents Babai's Nearest Plane
algorithm and discusses the improvements.

3.1. The Lovasz algorithm. We need a version of the algorithm that produces
the integer matrix M and is appropriate for use with floating-point arithmetic.
This is significantly different from Schnorr's work on using floating-point arith-
metic with the Lovasz algorithm, since he assumes that the matrix R is given
in fixed point and the result is to be computed exactly [14, 15].

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 179

procedure reduce (1, k);

{ r [Rl,kJ;

M.,k-= rM.,1;

R.,k-= rR.,1;

}
procedure swap (k);

{ p:= Rk-l,k;

Exchange M., k- I and M., k

Exchange R., k-I and R., k;

c := dk + p2dk-1;

p' := Pdk-I/C;

dk =dkdk- I/C;

dk-l := c;

- (~~1 P/) (1)

FIGURE 2. Subroutines used by the Lovasz algorithm

The major variables are an index k, a unit upper triangular matrix R, an in-
teger matrix M, and a diagonal matrix D with nonzero entries d1, d2, ... , d,.
These variables satisfy the following invariants: det MI = + 1, and there exists
an orthogonal matrix Q such that

(12) RM=QVR.

(This version of the Lovasz algorithm does not explicitly compute Q or the
product RM.)

Figure 2 gives a subroutine reduce(l, k) that performs a column operation
on M and R so as to make tRl,kt < . It assumes that / < k, so that an
integer multiple of column / can be subtracted from column k while retaining
R in unit upper triangular form. (The meaning of the notation [R1, kJ is that

R, k is to be rounded to the nearest integer.)
Figure 2 also gives a subroutine swap(k) that exchanges columns k and

k - I in both M and R. To prevent this from affecting elements of R on
or below the diagonal, rows k and k - 1 of R are then left-multiplied by a
matrix

(13) (1)(1 -P)

chosen so that p = Rk_l k at the beginning of swap(k) and there is an orthog-
onal matrix of the form

(14) (di n /) (1) (0 1) (1/ Idk-

180 ERIC GROSSE AND J. D. HOBBY

procedure Lovdsz(R, a);

{ Use modified Gram-Schmidt to find D and R with R = QV R;

Initialize M to be the identity matrix;

k := 2;
while k < n
do {reduce(k- 1, k);

if dk < (a _ k
_

-
(-k lk)dk-1

then {swap(k); k := max(k - 1, 2); }
else {for l:= k - 2, k - 3,..., 1

do reduce(l, k);
k:=k+ 1;

I
I

FIGURE 3. A version of the Lovasz algorithm that computes

matrices M, D, and R as in (12)

where dk and d'1 are the new values of dk and dk-l in swap(k). Thus

left-multiplying VD R by (14) does not affect the invariant that there is an
orthogonal matrix Q satisfying (12). This is equivalent to left-multiplying R
by (13) and updating dk and dkl.

The version of the Lovasz algorithm in Figure 3 uses the reduce and swap
routines to manipulate the matrices D, R, and M while maintaining the
invariants. Its arguments are an n x n matrix R and a real parameter a that
can be chosen in the range 4 < a < 1 to control the tradeoff between running
time and the equality of the results.

When the Lovasz algorithm stops, all off-diagonal entries of R are between

- 2 and 2 , and the entries of D satisfy

dk? dk
dk- < _d1

a- 4

for k = 2, 3, ..., n . (See [10].) Hence the ratio dk i/dk is at most (a -4i

for all i less than k. This upper bound is 2i when a = 3, but it is tightened
to (4)i when a approaches one.

The cost of tightening the bounds by increasing a is that this increases the
running time. Lovasz et al. bound the running time by showing that each call
to swap(k) reduces the product

n

(15) JJ dn-i
i=1

to at most a times its former value. In practice, the reduction factor is likely
to be better than this, especially if a . 1, so the running time for a = 0.9999
is only about three times that for a = 3.

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 181

3.2. Babai's Nearest Plane algorithm. The nearest lattice point problem in-
volved finding an integer vector y so that RMy is near RMyo in Euclidean
n-space, given a vector yo and matrices R and M. Babai suggests that if RM
is produced by the Lovasz algorithm, good results can be obtained by fixing the
components of y one at a time starting with Yn . When choosing Yk, it is a
good idea to take the choices for Yk+1 ,Yk+2, ... , Yn into account rather than
just looking at the nth entry in yo. Thus the Nearest Plane algorithm chooses
Yk according to the point RMy nearest to RMyo on the plane determined by
restricting Yk+1, Yk+2,- .. , Yn according to their chosen values.

With the help of (12), the norm of RM(y - yo) becomes

(16) II V/ R(y - Yo)II2

The advantage of this is that R is unit upper triangular, and Babai's Nearest
Plane algorithm reduces to doing back substitution with each element of y
rounded to the nearest integer as soon as it is computed. Writing w = Ryo for
the right-hand side, y can be computed as follows:

fori:=n,n-l,..., 1
n

do yi := Wi- L Ri, jY

This produces a vector y that makes (16) small, and via the relation x = My,
an x that makes (10) just as small.

Lovdsz(R, 0.9999);
Solve Myo = xo for yo;

w :=Ryo;
for i:= n, n -

n
do yi := wi - ,Ri, jYj

x := My;

FIGURE 4. How to find an integer vector x that makes

IIR(x - xo)J12 small

Figure 4 gives the complete strategy for finding an integer vector x that
makes (10) small. It could be speeded up somewhat by starting with w = Rxo
and modifying Lovdsz to maintain w = RM- xo0. This eliminates the need to
solve Myo = xo and compute Ryo. The maintenance of w involves adding

Wk-l:k = (o P 1 _p) Wk- : k

at the end of swap, and changing the second line of Lovdsz from
-2 - -

182 ERIC GROSSE AND J. D. HOBBY

to

dof di:= Ri, i; Ri,. := Rsi, /Ri, i; wi := wilRi, il
Once the Nearest Plane algorithm has been implemented efficiently, we need

to know how small it makes (16). Babai shows in [1] that it is within a factor
2n/2 of the best possible when the Lovasz algorithm is run with a = I . Using
the recommended value a = 0.9999 can only improve the bound, since the
effect of this change is to tighten the constraints on the final values of the
entries of D from dk-i/dk < 2i to dk-ildk < (4)i. In fact, Babai's proof
readily generalizes to give a bound of

fin!2 i
fl12 wherefi=

Thus Nearest Plane is guaranteed to get within a factor of 1.732 x 1.334nI2 of
the optimum value of (16).

Experiments with the test problems given in ?5 show that Nearest Plane
combined with the Lovasz algorithm usually reduced (16) to within 20% of the
optimum value for n < 20. Thus, there probably is not much to be gained by
using more elaborate algorithms, although Schnorr [13] does suggest a family of
lattice reduction algorithms that are theoretically superior to Lovasz's. Lagarias,
Lenstra, and Schnorr [8] also discuss a number of issues relevant to the problem
of finding near optimal solutions to the nearest lattice point problem. See also
LaMacchia [9] for a comparison of Lovasz and Seysen basis reduction.

Another option for small n is brute force search. Experiments showed that,
with clever pruning, exhaustive search can find the optimum when, say, n < 20,
but the running time can be huge and the payoff is usually small.

4. 12 SPLINE WITH FREE KNOTS

Imagine that you are on a deep space probe having just measured a function
of some sort and fit it by a spline. You wish to transmit it over a communications
channel with severely restricted bandwidth. Rather than sending double- or even
single-precision floating-point coefficients, you can afford to convert to integers
in order to achieve better compression of the data.

We wish to approximate a general smooth f by a spline E ajBj, which may
be generically described by: n, the number of degrees of freedom; k, the order
(k = 4 for a piecewise cubic); a knot sequence {ti} Ii<i<n+k ; B-spline coefficients
faj}1<i<n -

Let aj, tij be the specific knots and coefficients that approximately minimize

(17) sZ (f (xi) - Z ajBj(xi))
l<i<m

for some fixed sample points {xi}1<i<m. Let Bj be the n-vector of B-splines
on the knots t1j. Denote by Ba the m-by-n matrix [Bj(xi)]. Denote by Bt
the m by n - k matrix

(18) l j alB (xi)

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 183

where j ranges over the free knots, k + 1 < j < n. Taylor expansion around
aj, tj gives a linearized residual

a~~~~~~~
(I19) |[BaBt] [t]-[f(x) + Btt]| U 2

as in equation (1).
Jupp [7] has ably described the computational considerations in determining

aj, tj . See also [4]. For the purpose of our experiments, we have used Schryer's
ssaf [16] (which is based on de Boor's newnot [3]) to get a good initial guess
to tj . ssaf only attempts to get in the general vicinity of the optimum; further
effort would not lead to a dramatically smaller residual. In contrast, since we
need the maximum flexibility in moving knots, it is important that tj be close
to the continuous optimum. Therefore, we use Gay's [5] nonlinear least squares
program n2f to refine the ssaf results. For the present purposes, just assume tj
given.

4.1. Derivatives of B-splines. It is apparent that a key building block for the
quadratic model is 0BI/O tj . We compute these by differentiating the recurrence
relation for the B-splines,

(20) B,k(U) = u-ti Bi,k 1(U) + ti+k
- U Bi+ ,k- (U)

ti+k-. - ti ti+k -ti-

(There is also a formula using divided differences of truncated powers, given in
Lemma 3.1 of [7] and Theorem 4.27 of [17].) In practical terms, this just means
editing bsplvb in de Boor's pppack collection of spline routines. For each line of
code that contributes to the B-spline table, add a loop to accumulate derivatives.
In other words, apply the chain rule of differentiation directly to Fortran. This
has been done and is available by e-mail:

mail netlibOresearch.att.com

send dbspvt from a

We have not studied stability of the algorithm, but it meets our needs in this
application. On the half-open interval [tl, t1+1), the nonzero B-splines are
Blk+1, ...I , B . These depend on tl-k+, ... , tl+k- So in addition to the

(21) biatx(j) =Bj(u), 1 < j < k,
returned by bsplvb, our subroutine also returns

(22) dbiatx(j,i) Bil-k+j(u) 1< j < k, < i < 2k.
0 t1-k+i

It would be possible to proceed this way for the second derivatives needed to
build the Taylor quadratic, but for convenience we use centered differences with
step size 2e/3Ch and symmetrize by (Hi + HiT)/2.
4.2. Adjusting the local model. We want the quadratic model (5) to be valid
over the region that the lattice algorithms search. In Figure 5, the solid curve in-
dicates llr(x) 112/2 =: r2 in the vicinity of x0, sliced along the eigenvector of A
corresponding to the smallest eigenvalue. The dashed line shows the quadratic
model, adjusted as described in this section. Notice that r2 is behaving more
like a quartic than a quadratic, so a quadratic model based purely on derivative

184 ERIC GROSSE AND J. D. HOBBY

.0001

.00004-

3 X X I.00003 -

.00005 /

/ ~~.00002-

/ ~~~.00001

-. 1 -.05 0 .05 .1 -.001 0 .001

FIGURE 5. Slices of the r2 surface and adjusted affine model
along the first and last eigenvectors illustrate the need in certain
directions for more than purely local derivative information

information at xo would be too flat. This means that the lattice algorithms
will in effect be told that they can make radical changes in coefficients with-
out changing r2 much. For directions corresponding to large eigenvalues, the
quadratic model is an excellent fit.

This figure is for function 2 (arcsin) described in ?5 with k = 4, n = 8
(cubic spline with four interior knots). In this example, the condition number
of A (the ratio of the largest to the smallest eigenvalue) is about 3 * 105; in
other examples, the smallest eigenvalue is negative, even though the optimizer
succeeded in finding an xo that is a minimum to graphical accuracy.

To repair these two defects in the model, we would like to build a quadratic
based on information somewhat less local than just the derivatives at xo, but
making enough samples of r(x) to fit all (2n - k)2/2 coefficients for a better
A is expensive and unnecessary. Use the eigenvectors of A, probing r(x)
some distance along those 2n - k orthogonal directions, and adjusting only the
eigenvalues to get an A so the model interpolates r(x) at xo and the probes.
This is easy to do and works well in our tests.

The hardest issue is deciding how far to probe. We aim to have a quadratic
model valid over the region searched in the discrete optimization phase. For
each eigenvector we initially take a step 30 which is the smaller of: 1/ 10 of
interval on which the spline is defined, and 1/2 of distance that would lead
to knots coalescing. These are arbitrary parameters designed merely to give a
sensible starting model. Because the eigenvectors are orthogonal, it is valid to
probe independently in each direction. Let r = r([xoj)2, where fxoJ is the
result of rounding the components of xo. We then examine r2 at 3 := 30 to
ensure that r2 < r. If not, we cut the step, 3 := 3/2, and iterate. We then
adjust eigenvalues so the model is at least r2 for J and at least T for 3o.
(The latter restriction is necessary to prevent later rounding from coalescing the
knots.) After updating the eigenvalues S, we form R = SQT and then use the
rounding process of ?3.

Section 5 shows that this improved rounding strategy is much better than

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 185

just rounding the components of x0. This suggests that a better r can then
be obtained by using the result of improved rounding in place of Fxoj. Re-
peating the eigenvalue adjustment and updating R = SQT produces a less
pessimistic model with which we then repeat the rounding process of ?3. Sec-
tion 5 shows that this iterated improvement strategy is somewhat better than
improved rounding without the extra iteration.

5. NUMERICAL RESULTS FOR FREE-KNOT SPLINES

The complete process of generating rounded spline coefficients and knots was
implemented and tested. For lack of any standard collection of test functions
in the approximation community, we arbitrarily took the six nonsingular test
functions that come along with Schryer's ssaf program:

function 2: 2 + 2 arcsin(-.99 + 1.98x)/ arcsin(.99),
function 6: (cosh(2x - 1) - 1)/(cosh(l) - 1),
function 7: xl 6

function 8: (e 2x-1 - 1)/(e - e-1),
function 15: 2 + 2 sin 2?rx,
function 21: - ex log x.

The functions have been scaled so that x and f(x) are both confined to
the interval [0, 1]; hence the spline coefficients a1, a2, ... , a, and the knots
tk+1 , tk+2, ..., tn are also 0(1) . These quantities are to be represented in fixed
point as integers scaled by 2-b, where b is a parameter chosen in advance to
control the number of bits of precision to use.

For example, consider the case of function 15 with b = 10, n = 8, and
k = 3. Using n2f to find the optimum for the continuous problem results in
setting the eight spline coefficients

a,, a2, ..., a8 = 510.18u, 721.17u, 1179.29u,
714.34u, 309.66u, -155.29u, 302.83u, 513.82u

and placing the five interior knots

t4, t5, ... , t8 = 126.24u, 388.875u, 512u, 635.125u, 897.756u.

Here, u = 2-b is one unit in the last place. Sampling the difference between the
resulting spline and function 15 at 115 x-values produces a root mean square
(RMS) error of 1.045 x 10-3.

One way to get fixed-point versions of the knots and spline coefficients is
to naively round the thirteen numerators to integers, thereby increasing the
RMS error to 1.076 x 10-3. Creating a quadratic model for this error value
as explained in ?2, and using this to produce improved integer values for the
numerators as in ?3, we find

al, a2, a8= 510u, 723u, 1177u, 720u, 318u, -158u, 303u, 514u,
t4, tS,...,t8= 127u, 388u, 509u, 633u, 898u

for an RMS error of 1.057 x 10-3 .

186 ERIC GROSSE AND J. D. HOBBY

function 15, k=3, b=10 function 15, k=4, b=10

L()

L()

1 1.2 1.4 0.9 1 1.1 1.2 1.3

FIGURE 6. The log1o (RMS error) in the spline approximation
to function 15 as a function of loglo(n) for k = 3, 4. Reading
from top to bottom, the four error curves in each graph are
for simple rounding, improved rounding, iterated improvement,
and the continuous optimum

Rounding the knots and spline coefficients to fixed-point values has little ef-
fect on the error in this example because the error in the continuous problem
is relatively large. Figures 6 and 7 show what happens to the RMS error when
k and n are increased. As n is increased, the error for the continuous opti-
mum spline parameters decreases steadily while error for the various rounding
strategies tends to level off at some point.

Like all error graphs given in this section, these graphs are log-log plots of
the RMS error for the various rounding strategies as a function of n. The
upper line always shows the error for simple rounding, the middle two are for
improved rounding and iterated improvement, and the lowest line is always for
the continuous optimum.

The error for simple rounding tends to stay near 10-3 4 whenever n is large
enough to make the error for the continuous optimum less than 10-4. The
error at the continuous optimum has to be reduced to about 10-5 in order
to make the error for the more sophisticated rounding strategies flatten out,
but then they tend to jump around in the vicinity of 10-43. Thus, for data
compression applications, it makes sense to choose n near this point where the
error graphs first start to flatten out. Larger n would mean having unnecessary
knots and spline coefficients, while smaller n would mean sacrificing accuracy.

Figure 7 shows that the primary effect of increasing k is to make the contin-
uous optimum error fall to 10-5 before n gets very large. Thus a sufficiently
smooth test function is represented most compactly when k is as large as pos-
sible. Of course there is a time penalty for large k and some applications may
impose a priori restrictions on k. We shall restrict our attention to the case
k = 4; Figures 6 and 7 give a general idea of the effect of changing k.

We can get a better idea of the error behavior for the various rounding strate-
gies by considering the other test functions with other values of b. The error
for simple rounding is generally somewhat less than half of u = 2-b once n
is large enough, but this depends somewhat on the test function. Since u/2

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 187

function 15, k=5, b=10

N?-

0.9 1 1.1 1.2 1.3

FIGURE 7. The logarithm of RMS error versus loglo(n) for a
spline approximation problem as in Figure 6, but with k = 5.
As in that figure, there is one curve for each rounding strategy
and one at the bottom for the continuous optimum

is an upper bound on the effect of rounding each spline coefficient, one would
normally expect a significantly smaller effect on the value of the spline function
obtained by taking a weighted average of four spline coefficients. However, this
is offset by the effect of rounding the knot positions tk+1 , tk+2, .., tn ,

Figure 10 on p. 191 gives the RMS error for the various rounding strategies
for all six test functions when rounding to eight bits (b = 8). All the graphs
show a significant amount of noise due to the unpredictable nature of rounding
error, but improved rounding is generally about five times better than simple
rounding, and iterated improvement improves this to eight times better.

The more sophisticated rounding strategies really prove their usefulness when
b is increased. As can be seen from Figure 11 (p. 192), the gap between simple
rounding and iterated improvement increases to about a factor of 20 when
rounding to twelve bits. Since the error for simple rounding does appear to be
roughly proportional to 2b, this implies that iterated improvement with 12-bit
rounding is likely to be better than simple rounding to 16-bits.

What about the running time? It is mainly a function of the number of
spline coefficients n and the spline order k. Figure 8 (next page) gives log-log
graphs of the observed running time for the main subtasks for k = 3, 4, 5.
The predominant subtask labeled " c " in the graphs is finding the continuous
optimum and constructing the quadratic model. The continuous optimizer n2f
takes dozens of steps each involving 0(n3) work, and computing eigenvectors
for building the quadratic model is also 0(n3). The other three graphs labeled

U u ",(" L" and " n " refer to the time to update the quadratic model and run
the Lovasz and Nearest Plane algorithms. Since iterative improvement causes
each of these tasks to be done twice, their actual contributions to the total
running time are roughly twice what is shown but this would not shift the curves
very much on the log-log graphs. (All timings were done with double-precision
floating point on a VAX 8550.)

188 ERIC GROSSE AND J. D. HOBBY

function 15, k=4, b=10

0.9 1 1.1 1.2 1.3
function 15, k=3, b=10 function 15, k=5, b=10

,0X ~~~~~~~

0.8 1 1.2 1.4 0.9 1 1.1 1.2 1.3

FIGURE 8. The base-ten logarithm of observed running time in
seconds versus log1o(n) for the indicated k-values. The line
labeled " c " is the time for finding the continuous optimum and
quadratic model; the " u " line gives the time for updating the
model with a new error estimate; and the " L" and " n " lines
are for the Lovasz and Nearest Plane algorithms

6. PARAMETRIC SPLINES

Section 4 mentioned the motivation of limited bandwidth; an equivalent
situation is limited storage. Returning from the deep space probe to earth,
imagine you wish to compress a large database of road coordinates. Subject to
the restriction that the map curves remain accurate enough to guide a driver,
you wish to fit as much of the country as possible into limited storage space.

We wish to approximate a curve f: [0, 1] -+ RP by a parametric spline
s = E ajBj, described by: n, the number of degrees of freedom; k, the order
(k = 4 for a piecewise cubic); B-spline control points {aj}1<i<n E Rp .

The relevant measure of error in this approximation is Hausdorff distance
between the set of points f([O, 1]) and s([O, 1]). This permits considerable
freedom in the choice of spline parameterization. For convenience and to avoid
having to store any coefficients other than the control points, we use as knot
sequence, {ti}1<i<n+k, the chordal distance along the control point polygon.

To start the continuous optimization, we use the Wall and Danielsson method
for fast polygonal approxiation [20]. This method assumes f is piecewise linear
and produces a coarser piecewise linear curve g meeting a constraint on the

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 189

area between f and g. The vertices of g provide a crude initial guess for
{aj1}. From these and the Hausdorff sampling described next, we can solve a
linear least squares problem to get a better initial guess for {a} }.

Computing the true Hausdorff distance between f and s is no simple matter
[6]. For the experiments reported below, we first took a sample of points along
f, getting higher density in areas of high curvature by using a fixed number
of samples per segment in the piecewise linear f. Each time a new s was
constructed, we evaluated it at uniformly spaced t, made a monotone matching
with the samples from f, and took one step of Newton's method to refine the
"nearest neighbor" estimate. Using spline derivatives up to second order and
taking p = 2, the Newton step in t that attempts to make the tangent s'(t) be
orthogonal to the residual s(t) - f (xi) is given by

23 ~~~~~~~(fl -Sl)X + (f2 -S2)S' (23) tnew = told - (fi - I/ s)s + (f2 2 s s~ + (fi Si)S' - s s~ + (f2 - S

where fi means the first component of f(xi), s2 is the second component of
the derivative of the spline at told, and so on. This Newton step is safeguarded
by checking that it does not increase s(t) - f(xi) and that it does not step
outside the interval on which the spline is defined. Instead of our discrete
search followed by one Newton, one could choose to sample at many more
points or use more sophisticated univariate optimization.

Let there be m such sample points and denote the neighbor distances by
ri = IIs(ti) - f(xi)I I. Then El<i<m r2 is an objective which we minimize by
letting Gay's n2f adjust the spline control points. To avoid adding a stochastic
component to the objective, we started the matching afresh each time, accepting
O(m2) runtime. Since s is changing slowly, it is clear that with care the cost
of the Hausdorff estimate could be reduced to 0(m).

The final step is to build an affine model, IIR(x-xo)112 IIr(x)-r(xo)112 . Un-
like the univariate free-knot case, an analytic Taylor series for e is complicated
to obtain, involving the chain rule and derivatives of the spline, the chordal
parameterization, and the Hausdorff estimation. Instead, we directly solve for
the mn parameters in R by sampling r E JRtm at q points and formulating
a q-by-n linear least squares problem with m right-hand sides. Motivated by
analogy with estimating the quadratic Taylor polynomial by centered first and
second differences of step size a, we choose q = 2(n + (n - 1)n) and sample
llr(x) - r(xo)112 at x = xo + alui + a2uj for 1 < i < j < n and for a1, a2
taking values from {O, a, -a}.

As in ?4.2, it is important to correct this model by probing along nearly null
vectors of R. Let R = USVT be a singular value decomposition of the R
obtained by least squares as described in the preceding paragraph. Probe along
directions corresponding to columns of V, update S, and finally let the new
model be R = SVT. In this way, the parametric spline rounding problem has
been reduced to the form needed by the algorithm of ?3.

7. NUMERICAL RESULTS FOR PARAMETRIC CURVES

Parametric spline fitting with rounded B-spline control points was tested on
a United States government map database and on outlines for a Cyrillic font.
The map database [18] described roads, streams, railroads, and other features
as sequences of (latitude, longitude) pairs. Many of the resulting polynomial

190 ERIC GROSSE AND J. D. HOBBY

LO)

LO)

0

0

LO)
LO)

-10 -5 0 5 -10 -5 0 5

FIGURE 9. A road from the map database and the corresponding
parametric B-spline each plotted in units of .00050 of latitude
(about 56 meters). Open circles in the right-hand plot mark B-
spline control points and the heavy line is the control polygon.
Short segments perpendicular to the spline give the error

lines are promising candidates for curve approximation because actual roads,
streams, and railroads are often curved.

The object is to choose suitably accurate parametric B-spline approximations
and represent them as concisely as possible. Then the control points are rounded
so that they are integer multiples of some basic unit u. This could be done by
simple componentwise rounding, but it is better to use the quadratic error model
from ?6 with the improved rounding algorithm in ?3.

For data compression, the basic unit u should be as large as possible so that
the control points can be represented with small integers. An overall error target
of 22.2 meters was set, based on the apparent intrinsic local error in the data
for examples like the one in Figure 9. Next, the map features were broken at
sharp corners, and the ones that had less than 8 vertices or were straight to
within the desired tolerance were omitted from further consideration. Spline
approximations to the resulting 175 map features produced RMS errors ranging
from 0.51 to 21.3 meters.

A basic unit of u = 56 meters sufficed to keep all the RMS errors under
22.2 meters. A simple delta encoding of the resulting control points produced
1498 numbers. The UNIX pack command provides a reasonably efficient way
to encode these numbers. Its Huffman encoding requires 8552 bits including a
dictionary that described the encoding. Hence the actual numbers require 7808
bits or 5.12 bits per number encoded. This is very close to the entropy bound
of 7595 bits given by the formula

e= - Cc log2()

where ci is the number of times i occurs and Ctot = >2ci .
How much improvement do the techniques of ??6 and 3 provide over sim-

ple componentwise rounding? With simple rounding, the basic unit has to be
reduced to 16 meters in order to keep the RMS errors under 22.2 meters. This

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 191

function 2, k=4, b=8 function 6, k=4, b=8

fucto 7. k=, ,-8fnto ,k4 =

C? < ? [?J/==R>-C

0.9 1 1.1 1.2 0.9 1 1.1 1.2
function 7, k=4, b=8 function 8, k=4, b=8

0.9 1 1.1 1.2 0.9 1 1.1 1.2
function 15, k=4, b=8 function 21, k=4, b=8

0.9 1 1.1 1.2 0.9 1 1.1 1.2

FIGURE 10. The logarithm of RMS error versus loglo(n) for
each test function when b = 8

makes some of the numbers, produced by delta-encoding the control points, too
big for pack to handle since they do not to fit in one byte. However, the entropy
bound of 10078 bits or 6.73 bits per number encoded is adequate for compar-
ison. Based on the entropy, improved rounding provides a 29% improvement
in data compression.

The actual improvement in data compression will be lower because parts of
the map database were eliminated from consideration as not suitable for spline
approximation. This is to be expected since compressing the map database
would be a large project and spline fitting is only one part of it.

192 ERIC GROSSE AND J. D. HOBBY

function 2, k=4, b=12 function 6, k=4, b=12

1 1.2 1.4 0.9 1 1.1 1.2 1.3
function 7, k=4, b=12 function 8, k=4, b=12

0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3
function 15, k=4, b=12 function 21, k=4, bt12

Lfl~~~~~~~~~~~~~~L

0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3

FIGURE 11. The logarithm of RMS error versus loglo(n) for
each test function when b = 12

The font application involved 59 alphabetic characters from a Cyrillic font.
The character shapes were described as polygonal outlines containing a total
of 3404 vertices. They were preprocessed by breaking at sharp corners and
removing straight segments that were not suitable for spline approximation.
The continuous spline approximation yielded errors up to 0.33% of the font's
em size; i.e., if the 10 point font were scaled so that 10 printer's points is 100
"font units", the RMS errors would range from 0.032 to 0.16 font units.

The target for RMS errors after the rounded B-spline control points was set
to 0.35 font units. With improved rounding from ??6 and 3, and control point

IMPROVED ROUNDING FOR SPLINE COEFFICIENTS 193

coordinates could be expressed as multiples of 2.19 font units. The resulting
1510 delta-encoded coordinates had an entropy bound of 6665 bits or 4.41 bits
per coordinate.

With simple rounding, keeping the RMS errors under 0.35 font units re-
quired the control point coordinates to be multiples of 0.92 font units. The
delta-encoded coordinates had an entropy bound of 8511 bits or 5.64 bits per
coordinate. This implies improved rounding should give a roughly 28% im-
provement in data compression. This does not count the relatively straight
segments that were filtered out as not suitable for spline approximation. About
50% of the segments in the original polygonal outlines fall into this category.

For comparison, we note that the original data in the map database, rounded
to units of 22.2 meters, has a theoretical entropy of 33283 bits (versus 7595
for splines). The font outlines, rounded to .466% of em size, have a theoretical
entropy of 27328 bits (versus 6665 for splines). Thus we are achieving about a
factor of 4 improvement with the (lossy) compression.

8. FUTURE DIRECTIONS

There are many aspects of the problem still to explore.
In the univariate free-knot spline, it would be interesting to try Wall-

Danielsson as an alternative to ssaf. The optimization should use the log
transform recommended by Jupp [7], which we have had good success with
in conformal mapping [2]. Other approaches that we would like to try, suitably
adapted, are [12] and [11]. A thorough comparison of the various approaches
would be desirable, but is tangential to our main topic of how to round, once
the continuous optimum has been found.

Although we have demonstrated excellent theoretical compression of the map
database, practical completion of the project calls for further tuning of toler-
ances, a more robust spline optimization procedure, maintenance of intersec-
tion topology, and other work. Since this is a database that at present does
not quite fit on one CD-ROM, but could potentially be of value in millions of
automobiles, we hope that someone will be motivated to follow up on this.

There are applications besides splines, in areas like image processing, where
current algorithms compute approximations in floating point, but the final de-
sired output is represented in small integers. If suitable error metrics can be
found, improved rounding might be found valuable for these problems as well.

ACKNOWLEDGMENTS

We would like thank David Gay for his n2f nonlinear least squares program,
Norm Schryer for his ssaf program, and Henry Baird and Ruby Jane Elliott for
their implementation of Wall-Danielsson. We thank Jeff Lagarias and Andrew
Odlyzko for pointing us to [1, 8, 9, 15, 19]. Ken Thompson's extensive pro-
cessing of the TIGER database [18] made it possible to extract sample curves
with moderate effort. Norm Schryer and Margaret Wright and an anonymous
referee made helpful comments on the manuscript. PostScript is a registered
trademark of Adobe Systems Incorporated. UNIX is a registered trademark of
UNIX System Laboratories, Inc. VAX is a trademark of Digital Equipment
Corporation.

194 ERIC GROSSE AND J. D. HOBBY

BIBLIOGRAPHY

1. L. Babai, On Lovasz' lattice reduction and the nearest lattice point problem, Combinatorica
6 (1986), 1-13.

2. P. E. Bj0rstad and E. H. Grosse, Conformal mapping of circular arc polygons, SIAM J. Sci.
Statist. Comput. 8 (1987), 19-32.

3. C. de Boor, Good approximation by splines with variable knots. II, Numerical Solution of
Differential Equations (G. A. Watson, ed.), Springer-Verlag, New York, 1974, pp. 12-20.

4. C. de Boor and J. R. Rice, Least squares cubic spline approximation. II: variable knots,
Technical report, CSD TR 21, Purdue Univ., Lafayette, IN, 1968.

5. J. E. Dennis, Jr., D. M. Gay, and R. E. Welch, An adaptive nonlinear least squares algorithm,
ACM Trans. Math. Software 7 (1981), 348-368, 369-383.

6. F. N. Fritsch and G. M. Nielson, On the problem of determining the distance between
parametric curves, Technical report, Lawrence Livermore National Laboratory UCRL-JC-
105408, 1990.

7. D. L. B. Jupp, Approximation to data by splines with free knots, SIAM J. Numer. Anal. 15
(1978), 328-343.

8. J. C. Lagarias, H. W. Lenstra, Jr., and C. P. Schnorr, Korkin-Zolotarev bases and successive
minima of a lattice and its reciprocal, Combinatorica 10 (1990), 333-348.

9. B. A. LaMacchia, Basis reduction algorithms and subset sum problems, Master's thesis,
EECS Dept., Massachusetts Institute of Technology, 1991.

10. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515-534.

11. P. D. Loach and A. J. Wathen, On the best least squares approximation of continuous
functions using linear splines with free knots, IMA J. Numer. Anal. 11 (1991), 393-409.

12. B. Meinardus, G. Niimberger, M. Sommer, and H. Strauss, Algorithms for piecewise poly-
nomials and splines with free knots, Math. Comp. 53 (1989), 235-247.

13. C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoret.
Comput. Sci. 53 (1987), 201-224.

14. , A more efficient algorithm for lattice basis reduction, J. Algorithms 9 (1988), 47-62.
15. C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and

solving subset sum problems, Proc. of Fundamentals of Comput. Theory '91, Lecture Notes
in Comput. Sci., Springer-Verlag, New York, 1991.

16. N. L. Schryer, SSAF-smooth spline approximations to functions, Technical report, AT&T
Bell Laboratories CSTR 131, 1986.

17. L. L. Schumaker, Spline functions: Basic theory, Wiley, New York, 1981.
18. TIGER/LINE census files, 1990, technical documentation, Technical report, Bureau of the

Census, U. S. Dept. of Commerce, Washington, D.C., 1991.
19. P. van Emde Boas, Another NP-complete partition problem and the complexity of computing

short vectors in a lattice, Report 81-04, Math. Institute, Univ. of Amsterdam, 1981.
20. K. Wall and P.-E. Danielsson, A fast sequential method for polygonal approximation of digi-

tized curves, Computer Vision, Graphics, and Image Processing, vol. 28, 1984, pp. 220-227.

COMPUTING SCIENCE RESEARCH, AT&T BELL LABORATORIES, 600 MOUNTAIN AVENUE, MUR-
RAY HILL, NEW JERSEY 07974-0636

E-mail address, E. Grosse: ehgDre search. att . com
E-mail address, J. D. Hobby: hobbyDresearch. att. com

	Cit r192_c193:
	Cit r197_c198:

